/* zlib.h -- interface of the 'zlib' general purpose compression library
version 1.3.1, January 22nd, 2024
Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu
The data format used by the zlib library is described by RFCs (Request for
Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950
(zlib format), rfc1951 (deflate format) and rfc1952 (gzip format).
#define ZLIB_VERSION "1.3.1"
#define ZLIB_VERNUM 0x1310
#define ZLIB_VER_REVISION 1
#define ZLIB_VER_SUBREVISION 0
The 'zlib' compression library provides in-memory compression and
decompression functions, including integrity checks of the uncompressed data.
This version of the library supports only one compression method (deflation)
but other algorithms will be added later and will have the same stream
Compression can be done in a single step if the buffers are large enough,
or can be done by repeated calls of the compression function. In the latter
case, the application must provide more input and/or consume the output
(providing more output space) before each call.
The compressed data format used by default by the in-memory functions is
the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped
around a deflate stream, which is itself documented in RFC 1951.
The library also supports reading and writing files in gzip (.gz) format
with an interface similar to that of stdio using the functions that start
with "gz". The gzip format is different from the zlib format. gzip is a
gzip wrapper, documented in RFC 1952, wrapped around a deflate stream.
This library can optionally read and write gzip and raw deflate streams in
The zlib format was designed to be compact and fast for use in memory
and on communications channels. The gzip format was designed for single-
file compression on file systems, has a larger header than zlib to maintain
directory information, and uses a different, slower check method than zlib.
The library does not install any signal handler. The decoder checks
the consistency of the compressed data, so the library should never crash
even in the case of corrupted input.
typedef voidpf (*alloc_func)(voidpf opaque, uInt items, uInt size);
typedef void (*free_func)(voidpf opaque, voidpf address);
typedef struct z_stream_s {
z_const Bytef *next_in; /* next input byte */
uInt avail_in; /* number of bytes available at next_in */
uLong total_in; /* total number of input bytes read so far */
Bytef *next_out; /* next output byte will go here */
uInt avail_out; /* remaining free space at next_out */
uLong total_out; /* total number of bytes output so far */
z_const char *msg; /* last error message, NULL if no error */
struct internal_state FAR *state; /* not visible by applications */
alloc_func zalloc; /* used to allocate the internal state */
free_func zfree; /* used to free the internal state */
voidpf opaque; /* private data object passed to zalloc and zfree */
int data_type; /* best guess about the data type: binary or text
for deflate, or the decoding state for inflate */
uLong adler; /* Adler-32 or CRC-32 value of the uncompressed data */
uLong reserved; /* reserved for future use */
typedef z_stream FAR *z_streamp;
gzip header information passed to and from zlib routines. See RFC 1952
for more details on the meanings of these fields.
typedef struct gz_header_s {
int text; /* true if compressed data believed to be text */
uLong time; /* modification time */
int xflags; /* extra flags (not used when writing a gzip file) */
int os; /* operating system */
Bytef *extra; /* pointer to extra field or Z_NULL if none */
uInt extra_len; /* extra field length (valid if extra != Z_NULL) */
uInt extra_max; /* space at extra (only when reading header) */
Bytef *name; /* pointer to zero-terminated file name or Z_NULL */
uInt name_max; /* space at name (only when reading header) */
Bytef *comment; /* pointer to zero-terminated comment or Z_NULL */
uInt comm_max; /* space at comment (only when reading header) */
int hcrc; /* true if there was or will be a header crc */
int done; /* true when done reading gzip header (not used
when writing a gzip file) */
typedef gz_header FAR *gz_headerp;
The application must update next_in and avail_in when avail_in has dropped
to zero. It must update next_out and avail_out when avail_out has dropped
to zero. The application must initialize zalloc, zfree and opaque before
calling the init function. All other fields are set by the compression
library and must not be updated by the application.
The opaque value provided by the application will be passed as the first
parameter for calls of zalloc and zfree. This can be useful for custom
memory management. The compression library attaches no meaning to the
zalloc must return Z_NULL if there is not enough memory for the object.
If zlib is used in a multi-threaded application, zalloc and zfree must be
thread safe. In that case, zlib is thread-safe. When zalloc and zfree are
Z_NULL on entry to the initialization function, they are set to internal
routines that use the standard library functions malloc() and free().
On 16-bit systems, the functions zalloc and zfree must be able to allocate
exactly 65536 bytes, but will not be required to allocate more than this if
the symbol MAXSEG_64K is defined (see zconf.h). WARNING: On MSDOS, pointers
returned by zalloc for objects of exactly 65536 bytes *must* have their
offset normalized to zero. The default allocation function provided by this
library ensures this (see zutil.c). To reduce memory requirements and avoid
any allocation of 64K objects, at the expense of compression ratio, compile
the library with -DMAX_WBITS=14 (see zconf.h).
The fields total_in and total_out can be used for statistics or progress
reports. After compression, total_in holds the total size of the
uncompressed data and may be saved for use by the decompressor (particularly
if the decompressor wants to decompress everything in a single step).
#define Z_PARTIAL_FLUSH 1
/* Allowed flush values; see deflate() and inflate() below for details */
#define Z_STREAM_ERROR (-2)
#define Z_DATA_ERROR (-3)
#define Z_VERSION_ERROR (-6)
/* Return codes for the compression/decompression functions. Negative values
* are errors, positive values are used for special but normal events.
#define Z_NO_COMPRESSION 0
#define Z_BEST_COMPRESSION 9
#define Z_DEFAULT_COMPRESSION (-1)
#define Z_DEFAULT_STRATEGY 0
/* compression strategy; see deflateInit2() below for details */
#define Z_ASCII Z_TEXT /* for compatibility with 1.2.2 and earlier */
/* Possible values of the data_type field for deflate() */
/* The deflate compression method (the only one supported in this version) */
#define Z_NULL 0 /* for initializing zalloc, zfree, opaque */
#define zlib_version zlibVersion()
/* for compatibility with versions < 1.0.2 */
ZEXTERN const char * ZEXPORT zlibVersion(void);
/* The application can compare zlibVersion and ZLIB_VERSION for consistency.
If the first character differs, the library code actually used is not
compatible with the zlib.h header file used by the application. This check
is automatically made by deflateInit and inflateInit.
ZEXTERN int ZEXPORT deflateInit(z_streamp strm, int level);
Initializes the internal stream state for compression. The fields
zalloc, zfree and opaque must be initialized before by the caller. If
zalloc and zfree are set to Z_NULL, deflateInit updates them to use default
allocation functions. total_in, total_out, adler, and msg are initialized.
The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
1 gives best speed, 9 gives best compression, 0 gives no compression at all
(the input data is simply copied a block at a time). Z_DEFAULT_COMPRESSION
requests a default compromise between speed and compression (currently
deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_STREAM_ERROR if level is not a valid compression level, or
Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
with the version assumed by the caller (ZLIB_VERSION). msg is set to null
if there is no error message. deflateInit does not perform any compression:
this will be done by deflate().
ZEXTERN int ZEXPORT deflate(z_streamp strm, int flush);
deflate compresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full. It may introduce
some output latency (reading input without producing any output) except when
The detailed semantics are as follows. deflate performs one or both of the
- Compress more input starting at next_in and update next_in and avail_in
accordingly. If not all input can be processed (because there is not
enough room in the output buffer), next_in and avail_in are updated and
processing will resume at this point for the next call of deflate().
- Generate more output starting at next_out and update next_out and avail_out
accordingly. This action is forced if the parameter flush is non zero.
Forcing flush frequently degrades the compression ratio, so this parameter
should be set only when necessary. Some output may be provided even if
Before the call of deflate(), the application should ensure that at least
one of the actions is possible, by providing more input and/or consuming more
output, and updating avail_in or avail_out accordingly; avail_out should
never be zero before the call. The application can consume the compressed
output when it wants, for example when the output buffer is full (avail_out
== 0), or after each call of deflate(). If deflate returns Z_OK and with
zero avail_out, it must be called again after making room in the output
buffer because there might be more output pending. See deflatePending(),
which can be used if desired to determine whether or not there is more output
Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to
decide how much data to accumulate before producing output, in order to
If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
flushed to the output buffer and the output is aligned on a byte boundary, so
that the decompressor can get all input data available so far. (In
particular avail_in is zero after the call if enough output space has been
provided before the call.) Flushing may degrade compression for some
compression algorithms and so it should be used only when necessary. This
completes the current deflate block and follows it with an empty stored block
that is three bits plus filler bits to the next byte, followed by four bytes
If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the
output buffer, but the output is not aligned to a byte boundary. All of the
input data so far will be available to the decompressor, as for Z_SYNC_FLUSH.
This completes the current deflate block and follows it with an empty fixed
codes block that is 10 bits long. This assures that enough bytes are output
in order for the decompressor to finish the block before the empty fixed
If flush is set to Z_BLOCK, a deflate block is completed and emitted, as
for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to
seven bits of the current block are held to be written as the next byte after
the next deflate block is completed. In this case, the decompressor may not
be provided enough bits at this point in order to complete decompression of
the data provided so far to the compressor. It may need to wait for the next
block to be emitted. This is for advanced applications that need to control
the emission of deflate blocks.
If flush is set to Z_FULL_FLUSH, all output is flushed as with
Z_SYNC_FLUSH, and the compression state is reset so that decompression can
restart from this point if previous compressed data has been damaged or if
random access is desired. Using Z_FULL_FLUSH too often can seriously degrade
If deflate returns with avail_out == 0, this function must be called again
with the same value of the flush parameter and more output space (updated
avail_out), until the flush is complete (deflate returns with non-zero
avail_out). In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
avail_out is greater than six when the flush marker begins, in order to avoid
repeated flush markers upon calling deflate() again when avail_out == 0.
If the parameter flush is set to Z_FINISH, pending input is processed,
pending output is flushed and deflate returns with Z_STREAM_END if there was
enough output space. If deflate returns with Z_OK or Z_BUF_ERROR, this
function must be called again with Z_FINISH and more output space (updated
avail_out) but no more input data, until it returns with Z_STREAM_END or an
error. After deflate has returned Z_STREAM_END, the only possible operations
on the stream are deflateReset or deflateEnd.
Z_FINISH can be used in the first deflate call after deflateInit if all the
compression is to be done in a single step. In order to complete in one
call, avail_out must be at least the value returned by deflateBound (see
below). Then deflate is guaranteed to return Z_STREAM_END. If not enough
output space is provided, deflate will not return Z_STREAM_END, and it must
be called again as described above.
deflate() sets strm->adler to the Adler-32 checksum of all input read
so far (that is, total_in bytes). If a gzip stream is being generated, then
strm->adler will be the CRC-32 checksum of the input read so far. (See
deflate() may update strm->data_type if it can make a good guess about
the input data type (Z_BINARY or Z_TEXT). If in doubt, the data is
considered binary. This field is only for information purposes and does not
affect the compression algorithm in any manner.
deflate() returns Z_OK if some progress has been made (more input
processed or more output produced), Z_STREAM_END if all input has been
consumed and all output has been produced (only when flush is set to
Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
if next_in or next_out was Z_NULL or the state was inadvertently written over
by the application), or Z_BUF_ERROR if no progress is possible (for example
avail_in or avail_out was zero). Note that Z_BUF_ERROR is not fatal, and
deflate() can be called again with more input and more output space to
ZEXTERN int ZEXPORT deflateEnd(z_streamp strm);
All dynamically allocated data structures for this stream are freed.
This function discards any unprocessed input and does not flush any pending
deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
stream state was inconsistent, Z_DATA_ERROR if the stream was freed
prematurely (some input or output was discarded). In the error case, msg
may be set but then points to a static string (which must not be
ZEXTERN int ZEXPORT inflateInit(z_streamp strm);
Initializes the internal stream state for decompression. The fields
next_in, avail_in, zalloc, zfree and opaque must be initialized before by
the caller. In the current version of inflate, the provided input is not
read or consumed. The allocation of a sliding window will be deferred to
the first call of inflate (if the decompression does not complete on the
first call). If zalloc and zfree are set to Z_NULL, inflateInit updates
them to use default allocation functions. total_in, total_out, adler, and
inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
version assumed by the caller, or Z_STREAM_ERROR if the parameters are
invalid, such as a null pointer to the structure. msg is set to null if
there is no error message. inflateInit does not perform any decompression.
Actual decompression will be done by inflate(). So next_in, and avail_in,
next_out, and avail_out are unused and unchanged. The current
implementation of inflateInit() does not process any header information --
that is deferred until inflate() is called.
ZEXTERN int ZEXPORT inflate(z_streamp strm, int flush);
inflate decompresses as much data as possible, and stops when the input
buffer becomes empty or the output buffer becomes full. It may introduce
some output latency (reading input without producing any output) except when
The detailed semantics are as follows. inflate performs one or both of the
- Decompress more input starting at next_in and update next_in and avail_in
accordingly. If not all input can be processed (because there is not
enough room in the output buffer), then next_in and avail_in are updated
accordingly, and processing will resume at this point for the next call of
- Generate more output starting at next_out and update next_out and avail_out
accordingly. inflate() provides as much output as possible, until there is
no more input data or no more space in the output buffer (see below about
Before the call of inflate(), the application should ensure that at least
one of the actions is possible, by providing more input and/or consuming more
output, and updating the next_* and avail_* values accordingly. If the
caller of inflate() does not provide both available input and available
output space, it is possible that there will be no progress made. The
application can consume the uncompressed output when it wants, for example
when the output buffer is full (avail_out == 0), or after each call of
inflate(). If inflate returns Z_OK and with zero avail_out, it must be
called again after making room in the output buffer because there might be
The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH,
Z_BLOCK, or Z_TREES. Z_SYNC_FLUSH requests that inflate() flush as much
output as possible to the output buffer. Z_BLOCK requests that inflate()
stop if and when it gets to the next deflate block boundary. When decoding
the zlib or gzip format, this will cause inflate() to return immediately
after the header and before the first block. When doing a raw inflate,
inflate() will go ahead and process the first block, and will return when it
gets to the end of that block, or when it runs out of data.
The Z_BLOCK option assists in appending to or combining deflate streams.
To assist in this, on return inflate() always sets strm->data_type to the
number of unused bits in the last byte taken from strm->next_in, plus 64 if
inflate() is currently decoding the last block in the deflate stream, plus
128 if inflate() returned immediately after decoding an end-of-block code or
decoding the complete header up to just before the first byte of the deflate
stream. The end-of-block will not be indicated until all of the uncompressed
data from that block has been written to strm->next_out. The number of
unused bits may in general be greater than seven, except when bit 7 of
data_type is set, in which case the number of unused bits will be less than
eight. data_type is set as noted here every time inflate() returns for all
flush options, and so can be used to determine the amount of currently
The Z_TREES option behaves as Z_BLOCK does, but it also returns when the
end of each deflate block header is reached, before any actual data in that
block is decoded. This allows the caller to determine the length of the
deflate block header for later use in random access within a deflate block.
256 is added to the value of strm->data_type when inflate() returns
immediately after reaching the end of the deflate block header.
inflate() should normally be called until it returns Z_STREAM_END or an
error. However if all decompression is to be performed in a single step (a
single call of inflate), the parameter flush should be set to Z_FINISH. In
this case all pending input is processed and all pending output is flushed;
avail_out must be large enough to hold all of the uncompressed data for the
operation to complete. (The size of the uncompressed data may have been
saved by the compressor for this purpose.) The use of Z_FINISH is not
required to perform an inflation in one step. However it may be used to
inform inflate that a faster approach can be used for the single inflate()
call. Z_FINISH also informs inflate to not maintain a sliding window if the
stream completes, which reduces inflate's memory footprint. If the stream
does not complete, either because not all of the stream is provided or not
enough output space is provided, then a sliding window will be allocated and
inflate() can be called again to continue the operation as if Z_NO_FLUSH had
In this implementation, inflate() always flushes as much output as
possible to the output buffer, and always uses the faster approach on the
first call. So the effects of the flush parameter in this implementation are
on the return value of inflate() as noted below, when inflate() returns early
when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of
memory for a sliding window when Z_FINISH is used.
If a preset dictionary is needed after this call (see inflateSetDictionary
below), inflate sets strm->adler to the Adler-32 checksum of the dictionary
chosen by the compressor and returns Z_NEED_DICT; otherwise it sets
strm->adler to the Adler-32 checksum of all output produced so far (that is,
total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described
below. At the end of the stream, inflate() checks that its computed Adler-32
checksum is equal to that saved by the compressor and returns Z_STREAM_END
only if the checksum is correct.
inflate() can decompress and check either zlib-wrapped or gzip-wrapped
deflate data. The header type is detected automatically, if requested when
initializing with inflateInit2(). Any information contained in the gzip
header is not retained unless inflateGetHeader() is used. When processing
gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output
produced so far. The CRC-32 is checked against the gzip trailer, as is the