#include "pyconfig.h" /* include for defines */
/**************************************************************************
Symbols and macros to supply platform-independent interfaces to basic
C language & library operations whose spellings vary across platforms.
Please try to make documentation here as clear as possible: by definition,
the stuff here is trying to illuminate C's darkest corners.
Config #defines referenced here:
SIGNED_RIGHT_SHIFT_ZERO_FILLS
Meaning: To be defined iff i>>j does not extend the sign bit when i is a
signed integral type and i < 0.
Used in: Py_ARITHMETIC_RIGHT_SHIFT
Meaning: Extra checks compiled in for debug mode.
Used in: Py_SAFE_DOWNCAST
**************************************************************************/
/* typedefs for some C9X-defined synonyms for integral types.
* The names in Python are exactly the same as the C9X names, except with a
* Py_ prefix. Until C9X is universally implemented, this is the only way
* to ensure that Python gets reliable names that don't conflict with names
* in non-Python code that are playing their own tricks to define the C9X
* NOTE: don't go nuts here! Python has no use for *most* of the C9X
* integral synonyms. Only define the ones we actually need.
/* long long is required. Ensure HAVE_LONG_LONG is defined for compatibility. */
#define PY_LONG_LONG long long
/* If LLONG_MAX is defined in limits.h, use that. */
#define PY_LLONG_MIN LLONG_MIN
#define PY_LLONG_MAX LLONG_MAX
#define PY_ULLONG_MAX ULLONG_MAX
#define PY_UINT32_T uint32_t
#define PY_UINT64_T uint64_t
/* Signed variants of the above */
#define PY_INT32_T int32_t
#define PY_INT64_T int64_t
/* If PYLONG_BITS_IN_DIGIT is not defined then we'll use 30-bit digits if all
the necessary integer types are available, and we're on a 64-bit platform
(as determined by SIZEOF_VOID_P); otherwise we use 15-bit digits. */
#ifndef PYLONG_BITS_IN_DIGIT
#define PYLONG_BITS_IN_DIGIT 30
#define PYLONG_BITS_IN_DIGIT 15
/* uintptr_t is the C9X name for an unsigned integral type such that a
* legitimate void* can be cast to uintptr_t and then back to void* again
* without loss of information. Similarly for intptr_t, wrt a signed
typedef uintptr_t Py_uintptr_t;
typedef intptr_t Py_intptr_t;
/* Py_ssize_t is a signed integral type such that sizeof(Py_ssize_t) ==
* sizeof(size_t). C99 doesn't define such a thing directly (size_t is an
* unsigned integral type). See PEP 353 for details.
typedef ssize_t Py_ssize_t;
#elif SIZEOF_VOID_P == SIZEOF_SIZE_T
typedef Py_intptr_t Py_ssize_t;
# error "Python needs a typedef for Py_ssize_t in pyport.h."
/* Py_hash_t is the same size as a pointer. */
#define SIZEOF_PY_HASH_T SIZEOF_SIZE_T
typedef Py_ssize_t Py_hash_t;
/* Py_uhash_t is the unsigned equivalent needed to calculate numeric hash. */
#define SIZEOF_PY_UHASH_T SIZEOF_SIZE_T
typedef size_t Py_uhash_t;
/* Only used for compatibility with code that may not be PY_SSIZE_T_CLEAN. */
typedef Py_ssize_t Py_ssize_clean_t;
typedef int Py_ssize_clean_t;
/* Largest possible value of size_t. */
#define PY_SIZE_MAX SIZE_MAX
/* Largest positive value of type Py_ssize_t. */
#define PY_SSIZE_T_MAX ((Py_ssize_t)(((size_t)-1)>>1))
/* Smallest negative value of type Py_ssize_t. */
#define PY_SSIZE_T_MIN (-PY_SSIZE_T_MAX-1)
/* PY_FORMAT_SIZE_T is a platform-specific modifier for use in a printf
* format to convert an argument with the width of a size_t or Py_ssize_t.
* C99 introduced "z" for this purpose, but not all platforms support that;
* e.g., MS compilers use "I" instead.
* These "high level" Python format functions interpret "z" correctly on
* all platforms (Python interprets the format string itself, and does whatever
* the platform C requires to convert a size_t/Py_ssize_t argument):
* Lower-level uses require that you interpolate the correct format modifier
* yourself (e.g., calling printf, fprintf, sprintf, PyOS_snprintf); for
* fprintf(stderr, "index %" PY_FORMAT_SIZE_T "d sucks\n", index);
* That will expand to %ld, or %Id, or to something else correct for a
* Py_ssize_t on the platform.
# if SIZEOF_SIZE_T == SIZEOF_INT && !defined(__APPLE__)
# define PY_FORMAT_SIZE_T ""
# elif SIZEOF_SIZE_T == SIZEOF_LONG
# define PY_FORMAT_SIZE_T "l"
# elif defined(MS_WINDOWS)
# define PY_FORMAT_SIZE_T "I"
# error "This platform's pyconfig.h needs to define PY_FORMAT_SIZE_T"
/* Py_LOCAL can be used instead of static to get the fastest possible calling
* convention for functions that are local to a given module.
* Py_LOCAL_INLINE does the same thing, and also explicitly requests inlining,
* for platforms that support that.
* If PY_LOCAL_AGGRESSIVE is defined before python.h is included, more
* "aggressive" inlining/optimization is enabled for the entire module. This
* may lead to code bloat, and may slow things down for those reasons. It may
* also lead to errors, if the code relies on pointer aliasing. Use with
* NOTE: You can only use this for functions that are entirely local to a
* module; functions that are exported via method tables, callbacks, etc,
* should keep using static.
#if defined(PY_LOCAL_AGGRESSIVE)
/* enable more aggressive optimization for visual studio */
#pragma optimize("agtw", on)
/* ignore warnings if the compiler decides not to inline a function */
#pragma warning(disable: 4710)
/* fastest possible local call under MSVC */
#define Py_LOCAL(type) static type __fastcall
#define Py_LOCAL_INLINE(type) static __inline type __fastcall
#elif defined(USE_INLINE)
#define Py_LOCAL(type) static type
#define Py_LOCAL_INLINE(type) static inline type
#define Py_LOCAL(type) static type
#define Py_LOCAL_INLINE(type) static type
/* Py_MEMCPY is kept for backwards compatibility,
* see https://bugs.python.org/issue28126 */
#include <ieeefp.h> /* needed for 'finite' declaration on some platforms */
#include <math.h> /* Moved here from the math section, before extern "C" */
/********************************************
* WRAPPER FOR <time.h> and/or <sys/time.h> *
********************************************/
#ifdef TIME_WITH_SYS_TIME
#else /* !TIME_WITH_SYS_TIME */
#else /* !HAVE_SYS_TIME_H */
#endif /* !HAVE_SYS_TIME_H */
#endif /* !TIME_WITH_SYS_TIME */
/******************************
* WRAPPER FOR <sys/select.h> *
******************************/
/* NB caller must include <sys/types.h> */
#endif /* !HAVE_SYS_SELECT_H */
/*******************************
* stat() and fstat() fiddling *
*******************************/
#elif defined(HAVE_STAT_H)
/* VisualAge C/C++ Failed to Define MountType Field in sys/stat.h */
/* Windows doesn't define S_IFLNK but posixmodule.c maps
* IO_REPARSE_TAG_SYMLINK to S_IFLNK */
#define S_ISREG(x) (((x) & S_IFMT) == S_IFREG)
#define S_ISDIR(x) (((x) & S_IFMT) == S_IFDIR)
#define S_ISCHR(x) (((x) & S_IFMT) == S_IFCHR)
/* Move this down here since some C++ #include's don't like to be included
/* Py_ARITHMETIC_RIGHT_SHIFT
* C doesn't define whether a right-shift of a signed integer sign-extends
* or zero-fills. Here a macro to force sign extension:
* Py_ARITHMETIC_RIGHT_SHIFT(TYPE, I, J)
* Return I >> J, forcing sign extension. Arithmetically, return the
* I should have signed integer type. In the terminology of C99, this can
* be either one of the five standard signed integer types (signed char,
* short, int, long, long long) or an extended signed integer type.
* J is an integer >= 0 and strictly less than the number of bits in the
* type of I (because C doesn't define what happens for J outside that
* TYPE used to specify the type of I, but is now ignored. It's been left
* in for backwards compatibility with versions <= 2.6 or 3.0.
* I may be evaluated more than once.
#ifdef SIGNED_RIGHT_SHIFT_ZERO_FILLS
#define Py_ARITHMETIC_RIGHT_SHIFT(TYPE, I, J) \
((I) < 0 ? -1-((-1-(I)) >> (J)) : (I) >> (J))
#define Py_ARITHMETIC_RIGHT_SHIFT(TYPE, I, J) ((I) >> (J))
* "Simply" returns its argument. However, macro expansions within the
* argument are evaluated. This unfortunate trickery is needed to get
* token-pasting to work as desired in some cases.
#define Py_FORCE_EXPANSION(X) X
/* Py_SAFE_DOWNCAST(VALUE, WIDE, NARROW)
* Cast VALUE to type NARROW from type WIDE. In Py_DEBUG mode, this
* assert-fails if any information is lost.
* VALUE may be evaluated more than once.
#define Py_SAFE_DOWNCAST(VALUE, WIDE, NARROW) \
(assert((WIDE)(NARROW)(VALUE) == (VALUE)), (NARROW)(VALUE))
#define Py_SAFE_DOWNCAST(VALUE, WIDE, NARROW) (NARROW)(VALUE)
/* Py_SET_ERRNO_ON_MATH_ERROR(x)
* If a libm function did not set errno, but it looks like the result
* overflowed or not-a-number, set errno to ERANGE or EDOM. Set errno
* to 0 before calling a libm function, and invoke this macro after,
* passing the function result.
* This isn't reliable. See Py_OVERFLOWED comments.
* X is evaluated more than once.
#if defined(__FreeBSD__) || defined(__OpenBSD__) || (defined(__hpux) && defined(__ia64))
#define _Py_SET_EDOM_FOR_NAN(X) if (isnan(X)) errno = EDOM;
#define _Py_SET_EDOM_FOR_NAN(X) ;
#define Py_SET_ERRNO_ON_MATH_ERROR(X) \
if ((X) == Py_HUGE_VAL || (X) == -Py_HUGE_VAL) \
else _Py_SET_EDOM_FOR_NAN(X) \
/* Py_SET_ERANGE_ON_OVERFLOW(x)
* An alias of Py_SET_ERRNO_ON_MATH_ERROR for backward-compatibility.
#define Py_SET_ERANGE_IF_OVERFLOW(X) Py_SET_ERRNO_ON_MATH_ERROR(X)
* Py_ADJUST_ERANGE2(x, y)
* Set errno to 0 before calling a libm function, and invoke one of these
* macros after, passing the function result(s) (Py_ADJUST_ERANGE2 is useful
* for functions returning complex results). This makes two kinds of
* adjustments to errno: (A) If it looks like the platform libm set
* errno=ERANGE due to underflow, clear errno. (B) If it looks like the
* platform libm overflowed but didn't set errno, force errno to ERANGE. In
* effect, we're trying to force a useful implementation of C89 errno
* This isn't reliable. See Py_OVERFLOWED comments.
* X and Y may be evaluated more than once.
#define Py_ADJUST_ERANGE1(X) \
if ((X) == Py_HUGE_VAL || (X) == -Py_HUGE_VAL) \
else if (errno == ERANGE && (X) == 0.0) \
#define Py_ADJUST_ERANGE2(X, Y) \
if ((X) == Py_HUGE_VAL || (X) == -Py_HUGE_VAL || \
(Y) == Py_HUGE_VAL || (Y) == -Py_HUGE_VAL) { \
else if (errno == ERANGE) \
/* The functions _Py_dg_strtod and _Py_dg_dtoa in Python/dtoa.c (which are
* required to support the short float repr introduced in Python 3.1) require
* that the floating-point unit that's being used for arithmetic operations
* on C doubles is set to use 53-bit precision. It also requires that the
* FPU rounding mode is round-half-to-even, but that's less often an issue.
* If your FPU isn't already set to 53-bit precision/round-half-to-even, and
* you want to make use of _Py_dg_strtod and _Py_dg_dtoa, then you should
* #define HAVE_PY_SET_53BIT_PRECISION 1
* and also give appropriate definitions for the following three macros:
* _PY_SET_53BIT_PRECISION_START : store original FPU settings, and
* set FPU to 53-bit precision/round-half-to-even
* _PY_SET_53BIT_PRECISION_END : restore original FPU settings
* _PY_SET_53BIT_PRECISION_HEADER : any variable declarations needed to
* use the two macros above.
* The macros are designed to be used within a single C function: see
* Python/pystrtod.c for an example of their use.
/* get and set x87 control word for gcc/x86 */
#ifdef HAVE_GCC_ASM_FOR_X87
#define HAVE_PY_SET_53BIT_PRECISION 1
/* _Py_get/set_387controlword functions are defined in Python/pymath.c */
#define _Py_SET_53BIT_PRECISION_HEADER \
unsigned short old_387controlword, new_387controlword
#define _Py_SET_53BIT_PRECISION_START \
old_387controlword = _Py_get_387controlword(); \
new_387controlword = (old_387controlword & ~0x0f00) | 0x0200; \
if (new_387controlword != old_387controlword) \
_Py_set_387controlword(new_387controlword); \
#define _Py_SET_53BIT_PRECISION_END \
if (new_387controlword != old_387controlword) \
_Py_set_387controlword(old_387controlword)
/* get and set x87 control word for VisualStudio/x86 */
#if defined(_MSC_VER) && !defined(_WIN64) /* x87 not supported in 64-bit */
#define HAVE_PY_SET_53BIT_PRECISION 1
#define _Py_SET_53BIT_PRECISION_HEADER \
unsigned int old_387controlword, new_387controlword, out_387controlword
/* We use the __control87_2 function to set only the x87 control word.
The SSE control word is unaffected. */
#define _Py_SET_53BIT_PRECISION_START \
__control87_2(0, 0, &old_387controlword, NULL); \
(old_387controlword & ~(_MCW_PC | _MCW_RC)) | (_PC_53 | _RC_NEAR); \
if (new_387controlword != old_387controlword) \
__control87_2(new_387controlword, _MCW_PC | _MCW_RC, \
&out_387controlword, NULL); \
#define _Py_SET_53BIT_PRECISION_END \
if (new_387controlword != old_387controlword) \
__control87_2(old_387controlword, _MCW_PC | _MCW_RC, \
&out_387controlword, NULL); \
#ifdef HAVE_GCC_ASM_FOR_MC68881
#define HAVE_PY_SET_53BIT_PRECISION 1
#define _Py_SET_53BIT_PRECISION_HEADER \
unsigned int old_fpcr, new_fpcr
#define _Py_SET_53BIT_PRECISION_START \
__asm__ ("fmove.l %%fpcr,%0" : "=g" (old_fpcr)); \
/* Set double precision / round to nearest. */ \
new_fpcr = (old_fpcr & ~0xf0) | 0x80; \
if (new_fpcr != old_fpcr) \
__asm__ volatile ("fmove.l %0,%%fpcr" : : "g" (new_fpcr)); \
#define _Py_SET_53BIT_PRECISION_END \
if (new_fpcr != old_fpcr) \
__asm__ volatile ("fmove.l %0,%%fpcr" : : "g" (old_fpcr)); \
/* default definitions are empty */
#ifndef HAVE_PY_SET_53BIT_PRECISION
#define _Py_SET_53BIT_PRECISION_HEADER
#define _Py_SET_53BIT_PRECISION_START
#define _Py_SET_53BIT_PRECISION_END
/* If we can't guarantee 53-bit precision, don't use the code
in Python/dtoa.c, but fall back to standard code. This
means that repr of a float will be long (17 sig digits).
Realistically, there are two things that could go wrong:
(1) doubles aren't IEEE 754 doubles, or
(2) we're on x86 with the rounding precision set to 64-bits
(extended precision), and we don't know how to change
#if !defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) && \
!defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) && \
!defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
#define PY_NO_SHORT_FLOAT_REPR
/* double rounding is symptomatic of use of extended precision on x86. If
we're seeing double rounding, and we don't have any mechanism available for
changing the FPU rounding precision, then don't use Python/dtoa.c. */
#if defined(X87_DOUBLE_ROUNDING) && !defined(HAVE_PY_SET_53BIT_PRECISION)
#define PY_NO_SHORT_FLOAT_REPR
/* Py_DEPRECATED(version)
* Declare a variable, type, or function deprecated.
* extern int old_var Py_DEPRECATED(2.3);
* typedef int T1 Py_DEPRECATED(2.4);
* extern int x() Py_DEPRECATED(2.5);
#if defined(__GNUC__) && ((__GNUC__ >= 4) || \
(__GNUC__ == 3) && (__GNUC_MINOR__ >= 1))
#define Py_DEPRECATED(VERSION_UNUSED) __attribute__((__deprecated__))
#define Py_DEPRECATED(VERSION_UNUSED)